
From Active to Proactive Learning Methods

Pinar Donmez and Jaime G. Carbonell

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

{pinard,jgc}@cs.cmu.edu

1 Active Learning

1.1 Motivation

In many machine learning tasks, unlabled data abounds, but expert-generated labels are
scarce. Consider the process of learning to build a classier for the Sloan Digital Sky Sur-
vey (http://www.sdss.org/) so that each astronomical observation may be assigned its
class (e.g. “pinwheel galaxy”, “globular galaxy”, “quasar”, “colliding galaxies”, “neb-
ula”, etc.). The SDSS contains 230 million astronomical objects, among which profes-
sional Astronomers have classified manually less than one tenth of 1 percent. Consider
classifying web pages into subject-matter based taxonomies, such as the Yahoo taxomy
or a Dewy library catalog system. Whereas there are many billions of web pages, less
than .001% have reliable topic or subject categories.

In both cases, despite of the massive quantities of unlabeled data, some categories
have very few reliably labeled examples, but more are needed to to train machine learn-
ing systems to classify with sufficent accuracy. However, obtaining expert labels can
prove to be expensive, bounded (e.g. Astronomers will only give so much of their time),
or both. Hence, the question becomes one of selecting the most informative instances to
label; some labeled examples can be much more useful than others in training classiers
to minimize errors. For instance, selecting an example representative of many others,
or selecting an example in an unexplored region of the instance space, or selecting an
example close to the decision boundary induced from the earlier labeled examples are
all better strategies than random selection. Active learning is the process of selecting
the best examples to label in order to improve classifer performance, where “best” is
typially defined as minimizing the loss function [Miller et al., 1993] of the classifier or
otherwise directly minimizing its estimated classification error.

Alternatives to active learning attempt to use unlabeled data directly in helping to
training classifiers, without obtaining additional labels. These efforts range from trans-
ductive support vector machines [Joachims, 1999] to co-training [Blum and Mitchell,
1998] and other semi-supervised methods [He et al., 2007]. Although effective in some
cases, transductive and semi-supervised methods cannot in general rival active learning
since they do not take advantage of additional labeled examples. Combining ideas from
both semi-supervised and active learning remains a largely unexplored area for future
research.
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1.2 Active Learning Methods in Literature

Although instance selection has been implicitly part of Machine Learning from its early
years, such as in Michalski’s Star methodology and related work [Michalski et al., 1983;
Reinke and Michalski, 1985; Michalski et al., 1986], the systematic study of active learn-
ing has flourished and generated considerable interest in the past 15 years, including the
emergence of a solid thoeretical foundation for the field [Cohn et al., 1995]. Whereas
there have been several studies investigating the use of active learning in classification,
rank learning, regression, and function optimization, in this chapter, we mainly focus
on the dominant and most studied variant: active learning for classification.

The most straightforward strategy for selecting examples to label is random
sampling among unlabeled instances, which is usually adopted as a baseline for com-
parative analysis since it often outpeforms other naive approaches (such as represen-
tative sampling). We group active learning methods into three major categories based
on their underlying sampling criteria; namely, 1) uncertainty-based sampling strategies,
2) density-based strategies and 3) ensemble methods. We acknowledge that this is not
an exhaustive list, rather a summary grouping of the best performing and most widely
used active learning algorithms in the literature. Uncertainty sampling was proposed by
[Lewis and Gale, 1994] by choosing to obtain a label for the example on which the cur-
rent learner is most uncertain. Tong and Koller, 2000 [Tong and Koller, 2000] adopted
the same idea and applied it to a support vector machine (SVM) classifier. They provided
a theoretical motivation based on shrinking the version space (the margin) as much as
possible; in other words, selecting the example that will minimize the maximum ex-
pected size of the residual version space. In case of linear discriminant functions, this
corresponds to the selection of the unlabeled example with the smallest margin [Tong
and Koller, 2000]. Despite the theoretical justification of the version-space reduction
methods, their method wastes lableing effort attempting to eliminating areas of the pa-
rameter space that have no direct effect on the classification error rate. Hence, these
methods are not immune to selecting outliers [McCallum and Nigam, 1998] since they
have high uncertainty, but outliner labels seldom help the learner improve its generaliza-
tion performance. Nevertheless, uncertainty sampling plays a key role in many studies
in the literature, including our previous work which is explained in detail in Section 1.3.

The density-based sampling strategies incorporate the underlying data distribution
into the selection mechanism, and thus indirectly borrow from semi-supervised meth-
ods cited above. Most of these methods propose ways to trade off an uncertainty measure
with the density of the instance space in the immediate neighborhood of the sample. Xu
et al., 2003 [Xu et al., 2003] uses k-means to cluster the samples lying inside the margin
of an SVM classifier trained on the current labeled data. The cluster centroids are then
selected for labeling. Shen and Zhai, 2005 [Shen and Zhai, 2005] adopts the same idea
in an information retrieval scenario, and uses the k-medoid algorithm for the top rele-
vant examples. Similar active learning schemes are proposed by [Tang et al., 2002] for
natural language parsing, and by [Zhang and Chen, 2002] for content-based information
retrieval. In [McCallum and Nigam, 1998], a naive Bayes classifier is trained on both
labeled and unlabeled data using an EM algorithm. Under the assumption that unlabeled
data dominates the labeled data, the training algorithm clusters the full dataset but la-
beled data is used only to seed the clusers. Clustering information, then, contributes to
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the selection such that an uncertainty measure is weighed with the density surrounding
the example. Another active learning approach that utilizes combines uncertainty and
density criteria is our paired sampling strategy described in [Donmez and Carbonell,
2008]. The difference between our method and the density-based methods introduced
above is that our method relies on balanced sampling on both sides of a decision bound-
ary rather than sampling disproportionately on one side. Furthermore, it exploits the
natural grouping (clustering) of the data to effectively define a non-Eucledian local dis-
tance function, and maximizes a utility-based conditional entropy criterion for sampling.
We have shown that this new density-sensitive method yields significantly superior per-
formance over multiple datasets compared to other popular active learning sampling
methods [Donmez and Carbonell, 2008].

Nguyen and Smeulders, 2004 [Nguyen and Smeulders, 2004] suggested a probabilis-
tic framework where clustering is combined with a discriminative model. They assume
that examples lying on the classification boundary, in other words most uncertain exam-
ples, are informative, but using information about the underlying data distribution helps
to select better examples. Their method favors higher density examples lying close to
the decision boundary. Those examples are assumed to have the largest contribution to
the current error. Though their strategy works well in practice, especially by reducing
the error quickly, it exhibits very slow additional learning after substantial sampling.
On the other hand, standard uncertainty sampling initially has a slower learning rate,
but gradually outperforms their method, as shown in our previous work [Donmez et al.,
2007]. The reason is that density based methods sample from maximal-density unla-
beled regions, and thus help establish the initial classification boundary where it affects
the most remaining unlabeled data. On the other hand, uncertainty sampling fine-tunes
a decision boundary by sampling the regions where the classifier is least certain, re-
gardless of the distribution of the unlabeled data. Our algorithm, DUAL [Donmez et
al., 2007], tackles this issue by proposing a principled ensemble-based approach that
selects which sampling method to apply based on estimated residual classification error
reduction. DUAL incorporates a robust combination of density weighted and uniformly
weighted uncertainty sampling. We have empirically shown that DUAL combines the
best of both worlds, and leads to superior performance across various domains [Donmez
et al., 2007].

Another ensemble learning method is proposed by [Baram et al., 2003].
Baram et al., 2003 presented an online algorithm (COMB) that selects among three al-
ternative active learning strategies using a variant of the multi-armed bandit algorithm to
decide the strategy to be used at each iteration. Although there are similarities between
DUAL and COMB, there is a major distinction: COMB aims to select which sampling
method is optimal for a given dataset, irrespective of how much the algorithm has al-
ready learend, whereas DUAL focuses on selecting the operating range most suitable
for the sampling method. Other ensembled active learning methods have appeared in
literature. [Melville and Mooney, 2003] extends the query-by-committee algorithm by
constructing diverse committees by employing artificial training examples. Co-testing
[Muslea et al., 2000] is another ensemble active learning strategy inspired by the multi-
view approach in co-training [Blum and Mitchell, 1998]. It utilizes two redundant views
of the training data to create an ensemble and selects the unlabeled instance where two
classifiers disagree.
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1.3 Addressing Performance Barriers

1.3.1 DUAL: A Context-Sensitive Strategy Selection
DUAL [Donmez et al., 2007] is a principled ensemble-based sampling approach for ac-
tive learning. It combines the uncertainty sampling and density-based sampling by select-
ing sampling methods based on estimated residual classification error reduction. Almost
all active learning strategies that trade-off uncertainty vs. data density aim to balance the
uncertainty of the sample with its representativeness, but do so in a fixed manner, rather
than by dynamically selecting or reweighing, based on residual error estimation. In other
words, prior methods do not estimate the learning rate of the classifier, and therefore have
no criterion to switch sampling strategy if one starts to saturate in performance.

DUAL is a context-sensitive sampling method with a primary focus on improving
active learning for both the onset of active learning and especially the later portion of
the process, rather than traditional methods that concentrate primarily on the initial la-
bel selection and do not adapt. DUAL significantly improves upon the work of [Nguyen
and Smeulders, 2004] by incorporating a robust combination of density weighted uncer-
tainty sampling and standard (uniform) uncertainty sampling. Nguyen and Smeulders,
2004 [Nguyen and Smeulders, 2004] propose a Density Weighted Uncertainty Sam-
pling criterion, or DWUS for short:

s = arg max
i∈Iu

E[(ŷi − yi)2 | xi]p(xi) (1)

where E[(ŷi − yi)2 | xi] and p(xi) are the expected error and density of a given data
point xi, respectively. Iu is the index for the unlabeled data. This criterion favors points
that have the largest contribution to the current classification error. In contrast, one can
use an uncertainty-based selection criterion within the same probabilistic framework as
illustrated by the following formula:

s = arg max
i∈Iu

E[(ŷi − yi)2 | xi] (2)

We refer to the above principle as Uncertainty Sampling. Consider Fig. 1, which dis-
plays the performance of DWUS and Uncertainty Sampling on two UCI datasets. Af-
ter rapid initial gains, DWUS exhibits very slow additional learning while uncertainty
sampling continues to exhibit more rapid improvement.1 We have investigated the be-
haviour of unlabeled data in these two scenarios to explore the underlying reasons for
such a pattern. We have observed that at the early iterations, many points are highly
uncertain. Thus, DWUS can pick high density points which are lower down in the un-
certainty ranking but have a high absolute uncertainty score. Later, points with high
absolute uncertainty are no longer in dense regions. As a result, DWUS picks points
that have moderate density but low uncertainty because such points are scored highly
according to the criterion in Equation 1. Hence, it wastes effort picking instances whose
selection does not have a large effect on error rate reduction.

In order to address this problem, our algorithm DUAL adopts a dynamically
re-weighted mixture of density and uncertainty components. DUAL works as follows:

1 Although a quick drop in classification error for DWUS is also observed in [Nguyen and
Smeulders, 2004], they did not compare with uncertainty sampling.
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Fig. 1. Comparison of Density Weighted versus (standard) uniformly weighted Uncertainty Sam-
pling on two UCI benchmark datasets

It starts executing DWUS2 up until it estimates a cross-over point with uncertainty sam-
pling by predicting a low derivative of the expected error, e.g. ∂ε(DWUS)

∂xt
≤ δ. The

derivative estimation need not be exact, requiring only the detection of diminishing re-
turns which we explain soon. Then, it switches to execute a combined strategy of density-
based and uncertainty-based sampling. In practice, we do not know the future classifi-
cation error of DWUS, but we can approximate it by calculating the average expected
error of DWUS on the unlabeled data. It will not give us the exact cross-over point, but it
will provide a rough estimate of when we should consider switching between methods.
The expected error of DWUS on the unlabeled data can be evaluated as follows:

ε̂t(DWUS) =
1
nt

∑

i∈Iu

E[(ŷi − yi)2 | xi] (3)

where E[(ŷi − yi)2 | xi] is the error expectation for a given unlabeled data point xi:

E[(ŷi − yi)2 | xi] = (ŷi − 1)2P (yi = 1 | xi) + (ŷi)2P (yi = 0 | xi) (4)

Equation 3 is re-calculated at each iteration of active sampling. t is the iteration
number, and nt is the number of unlabeled instances at the t-th iteration and Iu is
the set of indices of the unlabeled points. By monitoring the average expected error
at every single iteration, we can estimate when DWUS’ performance starts to saturate,
i.e., ∂ε̂(DWUS)

∂xt
≤ δ. δ is assigned a fixed small value in our evaluations (see

[Donmez et al., 2007] for details). When it is near zero, this is equivalent to detect-
ing when a method is stuck in local minima/plateau in gradient descent methods. In
fact, this principle is flexible enough to work with any two active learning methods
where one is superior for labeling the initial data and the other is favorable later in
the process. It generalizes to N sampling methods by introducing additional estimated

2 Interested reader is referred to [Nguyen and Smeulders, 2004] for further details on the DWUS
algorithm.
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switchover points based on estimated derivative of expected error for each additional
sampling strategy.

After we estimate the cross-over, we use a mixture model for active sampling:

x∗
s = arg max

i∈Iu

π1 ∗ E[(ŷi − yi)2 | xi] + (1 − π1) ∗ p(xi) (5)

It is desirable for the above model to minimize the expected future error. After labeling
x∗

US , the expected error is:

fUS =
1
n

∑

j

EL+{x∗
US,y}[(ŷj − yj)2 | xj ] (6)

The subscript L + {x∗
US , y} indicates that the expectation is calculated from the model

trained on the data L+{x∗
US , y}. The appropriate weight in this scenario is inversely re-

lated with the expected error of uncertainty sampling. Thus, we can replace the weights
by π1 = 1 − fUS , and 1 − π1 = fUS , and obtain the following model:

x∗
s = arg max

i∈Iu

(1 − fUS) ∗ E[(ŷi − yi)2 | xi] + fUS ∗ p(xi) (7)

Achieving the minimum expected loss is guaranteed only for the extreme case where
the expected error, fUS , of uncertainty sampling is equal to 0. However, correlating the
weight of uncertainty sampling with its generalization performance increases the odds
of selecting a better candidate after the cross-over.

In the real world, we do not know the true value of fUS so we need to approximate
it. But, we approximate ε̂(US) as the average expected error of uncertainty sampling

Algorithm 1. The DUAL Algorithm
Input: Labeled data L, Unlabeled data U, max number of iterations T, and δ.
Output: A set S of actively sampled data points.
Program
Initialize: t = 0 and S = {}.
while while(not switching point) do

Run DWUS algorithm and compute ∂ε̂(DWUS)
∂xt

.

if ∂ε̂(DWUS)
∂xt

> δ then
x∗

s = arg max
i∈Iu

E[(ŷi − yi)
2 | xi]p(xi)

Add the chosen point to set S: S = S ∪ x∗
s

t=t+1 (Increment counter t)
else

Hit the switching point.
end if

end while
while while(t < T ) do

Compute E[(ŷ − y)2|x], p(x) via DWUS, and ε̂t(US) via uncertainty sampling.
x∗

s = arg max
i∈Iu

(1 − ε̂t(US)) ∗ E[(ŷi − yi)
2 | xi] + ε̂t(US) ∗ p(xi)

Add the chosen point to set S: S = S ∪ x∗
s

t=t+1
end while
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on the unlabeled portion of the data. This leads us to the following selection criterion
for DUAL:

x∗
s = arg max

i∈Iu

(1 − ε̂(US)) ∗ E[(ŷi − yi)2 | xi] + ε̂(US) ∗ p(xi) (8)

ε̂(US) is updated at every iteration t after the cross-over. Its calculation is exactly the
same as in Equation 3. However, the data to sample from is restricted to the set of
already labeled examples by active selection. This set is dynamically updated at each
iteration with the actively sampled points. Consequently, in order to calculate the ex-
pected error of uncertainty sampling the algorithm never requests the label of a point
that has not already been sampled during the active learning process. Such a restriction
will prevent an exact estimate of the expected error. But, it is a reasonable alternative,
and introduces no additional cost of labeling. The pseudo-code for the DUAL algorithm
is given in Algorithm 1.

Experiments. To evaluate the performance of DUAL, we ran experiments on UCI
benchmarks: splice, diabetes, image and letter. For the letter recognition dataset, we
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Fig. 2. Results on 4 different UCI benchmark datasets
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picked three pairs of letters (M-vs-N,O-vs-D,V-vs-Y) that are most likely to be con-
fused with each other. We compared the performance of DUAL with that of DWUS,
uncertainty sampling, representative sampling [Xu et al., 2003], density-based sam-
pling and the COMB method of [Baram et al., 2003]. Density-based sampling adopts
the same probabilistic framework as DWUS but uses only the density information for
active data selection: x∗

s = arg max
i∈Iu

p(xi). COMB uses an ensemble of uncertainty

sampling, sampling method of [Roy and McCallum, 2001], and a distance-based strat-
egy choosing the unlabeled instance that is farthest from the current labeled set. COMB
uses SVM with Gaussian kernel as the base classifier. For further implementation de-
tails on COMB, see [Baram et al., 2003].

Figure 2 presents the improvement in error reduction using DUAL over the other meth-
ods. We only display results on 4 datasets (See www.cs.cmu.edu/∼pinard/DUAL
for more thorough comparison). DUAL outperforms DWUS and representative sampling
both with p < 0.0001 significance. DUAL outperforms COMB with p < 0.0001 sig-
nificance on 4 out of 6 datasets, and with p < 0.05 on Image and M-vs-N data sets. We
also calculate the error reduction of DUAL compared to the strong baseline DWUS. For
instance, at the point in each graph after 3/4 of the sampling iterations after cross-over
occurs, we observe 40% relative error reduction on O-vs-D data, 30% on Image, 50%
on M-vs-N, 27% on V-vs-Y, 10% on Splice, and 6% on Diabetes dataset. These results
are significant both statistically and also with respect to the magnitude reduction in rel-
ative residual error. DUAL is superior to Uncertainty sampling (p < 0.001) on 5 out of
6 datasets.

1.3.2 Density-Sensitive Paired Sampling
Another active learning algorithm we developed is called density-sensitive paired
sampling [Donmez and Carbonell, 2008]. It relies on maximizing the likelihood of strad-
dling the decision boundary with paired samples that potentially have the maximum in-
formation for the current learner. In order to sample points that are likely to be maximally
informative to an active learner, we first seek to maximize the chance that we will sample
on both sides of a decision boundary – sampling disproportionately on either side will not
optimize boundary placement in the learning process. Maximizing the distance between
two points is a step in the right direction, but Euclidean distance may not be the optimal
measure; instead we investigate density-sensitive distance functions. The function we
adopted in [Donmez and Carbonell, 2008] was proposed by [Chapelle and Zien, 2005]
for clustering. The idea is to transform the data into a new space such that points in sep-
arate clusters are assigned low similarities, and vice versa. Then, the density-sensitive
distance between any two points is approximated by the longest distance edge along each
path that connects these two points. For details, see [Chapelle and Zien, 2005].

In order to maximize the likelihood of straddling the decision boundary, and to halve
the computational time, we sample a pair of points to label at a time, in contrast to the
typical active learning methods that select one point at each iteration. Figure 3 illustrates
the motivation for paired sampling in active learning. Here we assume for simplicity
the data is linearly separable. The dashed line shows the current decision boundary
while the two solid lines define the region where the true boundary is expected to lie;
namely the version space. The left figure in Figure 3 is an example of sampling a pair
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Fig. 3. Illustrative Example: The plus (minus) sign and circles indicate the positively (negatively)
labeled points and unlabeled data, respectively. xafter and xbefore indicate the line before and
after data is sampled for labeling. The selected points are labeled either positive (shown in grey)
or negative (shown in black). This example illustrates our motivation to sample two points with
opposite labels at a time instead of a single point.

for labeling from opposite sides of the current boundary. It greatly reduces the version
space since both points affect how the version space will be bounded. The figure on the
right shows that only a single point is sampled for labeling. Clearly, the left figure has
bigger potential to converge to the true hypothesis. These two scenarios illustrate why
it is more advantageous to straddle the decision boundary in order to reduce the set of
candidate hypotheses rapidly. With this goal in mind, we strive to sample two points
with opposite class labels in a binary classification model. In multi-class scenarios, this
is equivalent to sampling as many points as the number of classes at each iteration
of active learning, seeking to maximize the chance of sampling each class once per
round. Since the labels of the unlabeled data are unknown, we need to approximate
the likelihood that any two points have opposite class labels, P (yi �= yj | xi, xj), for
all i, j ∈ Iu where Iu is the set of indices of the unlabeled points in the data. By the
cluster assumption [Chapelle and Zien, 2005], points in different clusters are likely to
have different labels. In the new representation of the data, points in different clusters
are assigned low similarity. It is then reasonable to define P (yi �= yj | xi, xj) as
proportional to the distance between xi and xj , i.e. P (yi �= yj | xi, xj) ∝ ‖xi − xj‖2.
For an empirical analysis justifying this claim, see [Donmez and Carbonell, 2008].

In order to obtain a faster learning rate we need to select two points that are likely to
have opposite labels and high uncertainty:

{i∗, j∗} = arg max
i�=j∈Iu

P (yi �= yj | xi, xj) ∗ U(i, j)

= arg max
i�=j∈Iu

‖xi − xj‖2 ∗ U(i, j) (9)

where U(i, j) is a complex utility score. To compute U(i, j), we focus on sampling
the most uncertain points in high density regions. Hence, we propose an uncertainty
weighted density measure:



106 P. Donmez and J.G. Carbonell

p̂(x) =
∑

k∈Nx

exp(−‖x− xk‖2) ∗ min
yk∈{−1,+1}

{P (yk | xk, ŵ)} (10)

where Nx is the close neighborhood of the data point x, i.e. the set of indices of unla-
beled data points whose distance to x is less than a small threshold. p̂(x) is a function
that measures both the local density of a point and also the information content of its
neighbors. The local density depends on the number of close neighbors as well as their
proximity. Moreover, each neighbor’s contribution to the density score is weighed by
its uncertainty; hence, the effect of the neighbors with least uncertainty is reduced. For-
mally, we define the utility U(i, j) of a pair of points as the sum of the density estimate
for each point. By the definition of Nx, it includes the point x in consideration. Hence,
Equation 10 includes the uncertainty of the point itself, miny∈{−1,+1}{P (y | x, w)},
as a summand with weight equals to exp(−‖x − x‖2) = 1. We propose to give more
flexibility to that uncertainty term by introducing a regularization coefficient. It quan-
tifies a trade-off of the information content of an instance with the proximity weighted
information content of its neighbors. This allows us to define the utility function as
follows:

U(i, j) = log{p̂(xi) + p̂(xj)} (11)

= log
{ ∑

k �=i∈Nxi

exp(−‖xi − xk‖2) ∗ min
yk∈{±1}

{P (yk | xk, ŵ)} +

∑

r �=j∈Nxj

exp(−‖xj − xr‖2) ∗ min
yr∈{±1}

{P (yr | xr, ŵ)}

+s ∗ ( min
yi∈{±1}

{P (yi | xi, ŵ)} + min
yj∈{±1}

{P (yj | xj, ŵ)} )
}

Experiments. We conducted a set of experiments in order to evaluate our method on 5
real datasets and one artificial dataset, details of which can be found in
[Donmez and Carbonell, 2008]. We compared our paired sampling approach with four
other strategies: most uncertain, density-only, representative sampling [Xu et al., 2003],
and random sampling. Figure 4 shows the results on the UCI Breast data comparing
five methods. Our method has the steepest decrease as well as the lowest final error rate
which is very close to the optimal achieved using the entire training data. A more thor-
ough comparison of all methods on six datasets is given in Table 1. The first column
in Table 1 shows the dataset and the corresponding iteration at which the error rates
are compared. The percentage error reduction against the random sampling baseline
is given in parenthesis. Lowest error rates are given in bold. Our method wins on the
majority of the cases. Whenever it loses, there is only a slight difference between our
method and the winner so our method is still comparable on cases where it is not the
best.
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Fig. 4. Results on UCI Breast data. The solid horizontal line indicates the 10-fold cross-validation
error using the entire data as the training data.

Table 1. Comparison of five different active learners on all datasets

Data Proposed Method Most Uncertain Density Only Representative Random

Breast 5 0.278 (-24.6%) 0.334 (-9.04%) 0.293 (-20.5%) 0.380 (+2.9%) 0.369

Breast 11 0.264 (-20%) 0.285 (-13.6%) 0.297 (-10%) 0.347 (+5.1%) 0.330

Breast 17 0.249 (-18.8%) 0.269 (-12.3%) 0.264 (-14%) 0.302 (-1.6%) 0.307

Heart 5 0.213 (-18.3%) 0.245 (-6.1%) 0.220 (-15.7%) 0.216 (-17.2%) 0.261

Heart 11 0.198 (-4.3%) 0.208 (+0.4%) 0.220 (+6.2%) 0.205 (-0.9%) 0.207

Heart 17 0.166 (-13.5%) 0.164 (-14.5%) 0.219 (+14%) 0.20 (+4.1%) 0.192

Flare 5 0.465 (+5.2%) 0.454 (+2.7%) 0.454 (+2.7%) 0.478 (+8.1%) 0.442

Flare 11 0.394 (-1.6%) 0.451 (+10%) 0.422 (+2.9%) 0.417 (+1.7%) 0.410

Flare 17 0.366 (-8.7%) 0.449 (+11.9%) 0.401 (0%) 0.393 (-1.9%) 0.401

Face 5 0.350 (-1.9%) 0.468 (+31%) 0.420 (+17.6%) 0.313 (-12.3%) 0.357

Face 11 0.210 (-23.3%) 0.312 (+13.8%) 0.287 (+4.7%) 0.252 (-8%) 0.274

Face 17 0.151 (-32.5%) 0.196 (-12.5%) 0.189 (-15.6%) 0.202 (-9.8%) 0.224

Glass2 5 0.339 (-11%) 0.442 (+16%) 0.392 (+2.8%) 0.326 (-14.4%) 0.381

Glass2 11 0.317 (-7%) 0.341 (0%) 0.324 (-4.9%) 0.31 (-9%) 0.341

Glass2 17 0.266 (-8.9%) 0.292 (0%) 0.275 (-5.8%) 0.30 (+2.7%) 0.292

g50c 5 0.169 (-46.3%) 0.242 (-23.1%) 0.187 (-40.6%) 0.241 (-23.4%) 0.315

g50c 11 0.110 (-37.8%) 0.136 (-23.1%) 0.128 (-27.6%) 0.168 (-5%) 0.177

g50c 17 0.079 (-34.1%) 0.094 (-21.6%) 0.102 (-15%) 0.139 (+15.8%) 0.120

2 Proactive Learning

2.1 Why Proactively Learn?

Active learning, for all its popularity, operates in an idealized framework. For instance,
we assume that there exists an oracle who provides accurate answers to all questions
(error-free labeling), who never gets tired, and who charges uniformly regardless of
question difficulty. In virtually all applications these assuptions break down: Human



108 P. Donmez and J.G. Carbonell

experts occasionally err; they can be reluctant to answer if tired or faced with difficult
questions; different experts could charge differently for their services, perhaps based
on quesion difficulty. If we use lab experiments to obtain labels, rather than human
experts, these too can be fallible, producing inaccurate results, failing to produce results
on occasion, and exhibiting different costs depending on the experimental setup.

Consider, for instance, proteomic classification [Cheng et al., 2005; Wang et al., 2007],
where the task is to label proteins as to functional and structural family and subfamily
membership based on their primary amino-acid sequence and other features (e.g. locus,
density, homology, etc.). Although about three million proteins have been sequenced,
only about 1.5% have been structurally resolved with certainty, and these are predom-
inantly soluble proteins which are easier to crystalize and thefore ameanble to X-ray
diffraction crystalography – the primary method for obtaining the structure of large
proteins. If we need to obtain a structural label for a new protein, we have several op-
tions: 1) Ask a human expert, who will venture a educated guess if he or she can, or
say ”sorry” otherwise; 2) Check if the protein has very high sequence homology to a
structurally resolved one, and if so infer an identical structure label, but this process
will only provide labels for very sequence-proximate instances at best; or 3) Perform a
lab experiment such as X-ray Crystallography – very expensive and uncertain to yield
results, or NMR imaging for small proteins – less expensive but its reliability plummets
with increasing protein size. The problem we have is not just to choose an instance to
label, but also choose a labeling method (an ”oracle”) most appropriate for the instance.
And, if we have a fixed budget, we must also calculate the cost of failure – experiments
that do not yield results still incur costs. Hence, we cannot select the information-value
best instance without regards to probability of successfully obtaining a label and with-
out regard to cost. Ideally we want to jointly optimize the selection of instance and
labeling method (i.e. oracle), which might yield a more certain or inexpensive choice
over the information-value-only optimum.

There are many real learning problems with characteristics similar to protein label-
ing, perhaps more so than for the idealized oracle of active learning. Thus, we need to
extend active learning to include a utility-based deision-theoretic approach that encom-
passes oracle errors, oracle reluctance, and variable costs. We call this extension proac-
tive learning. In summary, proactive learning extends active learning as in Table 2.

Table 2. Active versus Proactive Learning

Oracle Property Active Learning Proactive Learning
Number Individual (one oracle) Plural (different oracles)
Accuracy Infallible (always right) Probabilistic (may err)
Reluctance Indefatigable (always answers) Reluctant (may refuse to answer)
Cost Invariant (free or constant) Variable (per oracle, per instance)

Proactive learning is a naescent field of investigation; the remainder of this paper
provides a substantial exploratory foray, but much research remains to be done.

2.2 A Case-Study: Optimizing Proactive Learning with Two Oracles

In this section, we aim to show that a decision-theoretic approach [DeGroot, 2004] is
beneficial for cost-effective sampling in cases with imperfect oracles. We mainly focus
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on three model scenarios embodying the notion of oracles with differing properties and
costs. In each scenario, we target a single oracle property. In “Scenario 1”, we assume
there exist one reliable oracle and one reluctant oracle. The reliable oracle gives an
answer every time it is invoked with a query, and the answer is always correct. The
reluctant oracle, on the other hand, does not always provide an answer, but when it
answers it does so correctly. We assume the probability of getting an answer from the
reluctant oracle depends on the difficulty of the classification task. Not surprisingly,
they charge different fees: the reliable oracle is more expensive than the potentially
reluctant one.

Rather than fixing the number of instances to classify, as in standard active learn-
ing, proactive learning fixes a maximum budget envelope since instances and oracles
may have variable costs. We formulate the problem as a joint optimization of which
instance(s) to sample and which oracle to use to purchase their label(s), where the
objective is to maximize the cumulative value of the information given a pre-defined
budget:

maximize E[V (S)] − λ(
∑

k

tk ∗ Ck) s.t.
∑

k

tk ∗ Ck = B ,
∑

k

tk = |S|

where B is the budget, S is the set of instances to be sampled, and E[V (S)]
is the expected value of information of the sampled data to the learning algorithm.
V (S) is a value function that can be replaced with any active selection criterion.
In our experiments, we adopt a density weighted uncertainty score proposed in
[Donmez and Carbonell, 2008], which significantly outperforms other strong baselines.
k ∈ K denotes the chosen oracle from the set of oracles, K , and λ is a parameter
controlling the relative importance of maximizing the information and minimizing the
cost. For simplicity, we assumed λ = 1 in this work. Ck and tk indicate the cost of the
chosen oracle and the number of times it is invoked, respectively. UL is the set of unla-
beled examples, |S| is the total size of the sampled set3. The drawback of this approach
is that it is difficult to optimize directly due to the fact that the maximization is over
the entire set of potential sampling sequences, an exponentially large number. Thus, we
cannot decide all the points to be sampled at once. A tractable alternative is a greedy
approximation that will select the locally-optimal strategy at each round according to a
joint utility function of the oracle-instance pair:

(x∗, k∗) = arg max
x∈UL,k∈K

U(x, k) = arg max
x∈UL,k∈K

P (ans | x, k) ∗ V (x)

Ck
where k ∈ K

(12)

where the utility U(x, k) is defined as the expected information value of that example
at unit cost.

We need to simulate reliability and reluctance since there do not exist real-world
datasets that have ground truth information on it. We assume the reliable (perfect) oracle
resembles a system that has been trained on the entire dataset and has zero training error.
Unlike the reliable oracle, a reluctant oracle has access only to a small portion of the
data; therefore, it is not knowledgable for every point. We train a classifier on a small
random subset of the entire data to obtain a posterior class distribution P (y | x). We

3 The extension of this formulation to more than two oracles is straightforward.
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assume that the chance of obtaining an answer from the reluctant oracle is low when
the uncertainty miny∈Y P (y | x) is high and vice versa.

We further assume that the reluctant oracle’s knowledge level or response charac-
teristics are unknown apriori. Hence, we estimate these properties in an exploration
phase. We hypothesize that the oracle shows similar response characteristics for sim-
ilar data instances since we model reluctance as a function of uncertainty which is
similar for similar instances. Therefore, it is reasonable to estimate the answer proba-
bility of the reluctant oracle by inquiring the labels of the cluster centroids and prop-
agating the information to nearby points. We cluster the unlabeled data using k-means
clustering [Hartigan and Wong, ]. The number of clusters depends on a pre-defined
budget available for this phase and the cost of the reluctant oracle. For each cluster,
if we obtain the label of the centroid, then we increase the answer probability of the
points in this cluster. Similarly, we decrease the answer probability of the points in
the clusters whose centroids we did not obtain the labels of. Initially, we assume the
answer probability for each unlabeled point is 0.5, which indicates a random guess.
Then, we update the answer probabilities of the reluctant (unreliable) oracle so that it
changes as a function of the proximity of the point to the cluster centroid and oracle
responsiveness:

P̂ (ans | x, reluctant) =
0.5
Z

∗ exp

(
h(xct , yct)

2
ln

maxd − ‖xct − x‖
‖xct − x‖

)
, ∀x ∈ Ct

(13)

where Z is a normalization factor. xct is the centroid of the cluster Ct that includes
x. h(xc, yc) ∈ {1,−1} is an indicator function which is equal to 1 when we receive
the label yc for the centroid xc, and −1 otherwise. ‖xc − x‖ is the Euclidean distance
between the cluster centroid xc and the point x and maxd := maxxć,x ‖xć − x‖ is the
maximum distance between any cluster centroid and data point.

We substitute the estimated answer probability into the utility function, i.e.

Û(x, k) = P̂ (ans|x,k)∗V (x)
Ck

. The joint sampling of the oracle-example pair can now
be performed as shown in Algorithm 2. The algorithm works in rounds till the budget
is exhausted. Each round corresponds to a single label acquisiton attempt where sam-
pling persists until obtaining a label. However, we need to restrain from spending too
much on a single attempt by adaptively penalizing the reluctant oracle every time it
refuses to answer. At any given round, if the algorithm chooses the reluctant oracle and
does not receive an answer, the utility of remaining examples with respect to this oracle
decreases by the amount spent thus far at this round:

Û(x, reluctant) =
P̂ (ans | x, reluctant) ∗ V (x)

Cround

where Cround is the amount spent thus far in the given round. This penalization only
applies to the reluctant oracle since the reliable oracle always provides the label. Algo-
rithm 2 selects the maximum utility examples. This framework leads to an incremen-
tally optimal solution in the sense that the most useful data is sampled at the minimum
cost.
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Algorithm 2. Proactive Learning: Scenario 1
Input: a classifier f , labeled data L, unlabeled data UL, entire budget B, clustering budget
BC < B, two oracles, each with a cost Ck, k ∈ K = {reliable, reluctant}
Output: f
- Cluster UL into p = BC/Creluctant clusters
- Let xct be the data point closest to its cluster centroid, ∀t = 1, ..., p
- Query the label yct for each cluster centroid xct

- Identify {xc1 , ..., xcg} for which we obtain the labels4

- Estimate P̂ (ans | x, reluctant) via Equation 13
- Update L = L ∪ {xct , yct}g

t=1, UL = UL \ {xct , yct}g
t=1

- cost spent so far CT = BC

while CT < B do
- Train f on L
- Initialize the cost of this round Cround = 0 and the set of queried examples Q = {}
- ∀k ∈ K, x ∈ UL estimate utility Û(x, k)
repeat

1. Choose k∗ = arg max
k∈K

maxx∈UL\Q{Û(x, k)}
2. Choose x∗ = arg max

x∈UL\Q
{Û(x, k∗)}

3. Update Cround = Cround + Ck∗

4. Q = Q ∪ {x∗}
5. Query the label y∗ with probability P (ans | x∗, k∗)

until label y∗ is obtained
- Update CT = CT + Cround

- Update L = L ∪ (x∗, y∗) and UL = UL \ (x∗, y∗)
end while

In real applications, such as protein structure classification, there might also be fal-
lible oracles which always answer, but the credibility of the answer is questionable5.
We simulate this setting in “Scenario 2”, where we assume two oracles; one reliable
and one unreliable oracle. The reliable oracle is the perfect oracle that always pro-
vides the correct answer to any query. The unreliable oracle in this scenario is fal-
lible that it may provide a random label for the queried example x with probability
1 − P (correct | x, k). We assume the probability of correct classification approaches
0.5 (random guess) if an example approaches the decision boundary. Similar to the
previous scenario, we request the labels of the cluster centroids. Unlike the reluctant
oracle, the fallible oracle provides the label together with its confidence6. The confi-
dence is its posterior class probability for the provided label, P (y | x). If the class
posterior is within an uncertainty range, then we decide not to use the provided label
since it is likely to be noisy. We decrease the correctness probability for the points in
the cluster whose centroid has a class posterior in the uncertainty range and vice versa;

5 Wrong answers might also be due to the noise in the data. But, we for now we assume the data
is noise-free, and fallibility is only a property of the oracle.

6 This could be a rather strong assumption. Section 2.3 discusses a more general case without
requiring such information.
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i.e. P̂ (correct | x, fallible) = 0.5
Z ∗exp

(
h̃(xct ,yct)

2 ln maxd−‖xct−x‖
‖xct−x‖

)
∀x ∈ Ct where

h̃(xct , yct) = −1 if P (y | xct) is in the uncertainty range, and 1 otherwise. The pseu-
docode of the algorithm is given in Algorithm 3, where h denotes the number of high
confident centroids.

Algorithm 3. Proactive Learning: Scenario 2
Input: a classifier f , labeled data L, unlabeled data UL, entire budget B, clustering budget
BC < B, two oracles, each with a cost Ck, k ∈ K = {reliable, fallible}
Output: f
- Cluster UL into p = BC/Cfallible clusters
- Let xct be the data point closest to its cluster centroid, ∀t = 1, ..., p
- Query the label yct for each cluster centroid xct

- Identify {xc1 , ..., xch} for which the fallible oracle has high confidence
- Estimate P̂ (correct | x, fallible) as in Equation 13
- Update L = L ∪ {xct , yct}h

t=1, UL = UL \ {xct , yct}h
t=1

- cost spent so far CT = BC

while CT < B do
1. Train f on L
2. ∀k ∈ K, x ∈ UL estimate Û(x, k)
3. Choose k∗ = arg max

k∈K
maxx∈UL{Û(x, k)}

4. Choose x∗ = arg max
x∈UL

{Û(x, k∗)}
5. Update CT = CT + Ck∗

6. Update L = L ∪ (x∗, y∗) and UL = UL \ (x∗, y∗) where y∗ is the correct label with
probability P (correct | x∗, k∗)

end while

Thus far, we have only considered the settings where a uniform fee is charged for
every query by an oracle, although each oracle may charge differently. Fraud detection
in banking transactions is a good example for this setting. The customer records are
saved in the bank database so it takes the same amount of time and effort, hence the
same cost, to look up any entry in the database. However, it is possible that the costs are
distributed non-uniformly over the set of instances. For instance in text categorization,
it might be relatively easy for an annotator to categorize a short web page; hence the
cost is modest. On the other hand, it is more time-consuming to assign a book into
a category, which incurs a considerable reading time and therefore cost. We already
discussed variable costs in protein classification, where less expensive NMR imaging
may apply to smaller proteins. Another example for a non-uniform cost scenario is
medical diagnosis. Some diseases such as herpes are easy to diagnose. Such diagnoses
are not costly since there is usually a major definitive symptom, i.e. outbreak of blisters
on the skin. On the other hand, diagnosing hepatitis can be more costly since it may
require blood and urine tests, CT scans, or even a liver biopsy. In “Scenario 3”, we
explore the problem of deciding which instances to query for the labels when label
acquisition cost varies with the instance. We assume two oracles one of which has a
uniform and fixed cost for each query whereas the other charges according to the task
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Algorithm 4. Proactive Learning: Scenario 3

Input: a classifier f , labeled data L, unlabeled data UL, entire budget B, two oracles, each
with a cost Ck, k ∈ K = {unif, non − unif}
Output: f
cost spent so far CT = 0
while CT < B do

1. Train f on L
2. ∀k ∈ K, x ∈ UL calculate Û(x, k) via Equation 14.
3. Choose k∗ = arg max

k∈K
maxx∈UL{Û(x, k)}

4. Choose x∗ = arg max
x∈UL

{Û(x, k∗)}
5. Update CT = CT + Ck∗

6. Update L = L ∪ (x∗, y∗), UL = UL \ (x∗, y∗)
end while

difficulty. We further assume that these oracles always provide an answer and both are
perfectly reliable in their answers.

We model the cost of each example x as a function of the posterior class distribution
P (y | x) so that there is a positive correlation between the classification difficulty and
the cost. We use the class posterior calculated similarly in the previous scenarios. The
non-uniform cost Cnon−unif (x) per instance is then defined as follows:

Cnon−unif (x) = 1 − maxy∈Y P (y | x) − 1/|Y|
1 − 1/|Y|

The cost increases as the instance approaches the decision boundary and vice versa. In
other words, the oracle charges based on how difficult it is to classify, and how valuable
it might potentially be to the learner. This sets up a challenging decision in terms of
the utility-cost trade-off. The utility score in this scenario is calculated as the difference
between the information value and the cost instead of the information value per unit
cost7. This is to avoid infinitely large utility scores as a result of the division by small
ε-cost. Thus, the revised utility score per oracle is given as follows:

Û(x, unif) = V (x) − Cunif (14)

Û(x, non − unif) = V (x) − Cnon−unif (x)

where Cunif is the fixed cost of the uniform-cost oracle. The pseudocode of the al-
gorithm is given in Algorithm 4. There is no clustering phase in Algorithm 4 since
we assume we know the cost of every instance, which is realistic for many real-world
applications.

Problem Setup. In order to simulate the reliability of the labeling source (oracle), we
assume that a perfectly reliable oracle resembles by a strong classifier trained on the

7 In general, if the cost and information value are not assessed in the same units, then they are
normalized into the same range.
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entire data, and having zero training error. An unreliable oracle, on the other hand, re-
sembles a classifier trained on only a small subset of the entire data; hence a weak one.
We randomly sampled a small subset from each dataset and trained a logistic regression
classifier on this sample to output a posterior class distribution. Then, we identified the
instances whose class posterior falls into the uncertainty range, i.e. miny P (y | x) ∈
[0.45, 0.5]. This range is used to filter the instances that the reluctant oracle does not an-
swer or the fallible oracle outputs a random label. We varied the percentage of instances
that fall into the uncertainty range [.45, .5]. The second column in Table 3 shows the dif-
ferent percentages used in our experiments. There is also a tradeoff between cost and
unreliability to have an incentive to choose between oracles rather than exploiting a
single one. The higher cost ratios for the fallibility scenario indicate more penalization
for receiving a noisy label. See Table 3 for details.

Table 3. Oracle Properties and Costs. BC is the clustering budget, B is the entire budget. Un-
certain % is the percentage of the uncertain data points. Cost Ratio is the ratio of the cost of the
reliable oracle to the cost of the unreliable one.

Scenario Uncertain % Cost Ratio BC B

Scenario 1
45-50% 1:3 20

30050-55% 1:4 30
65-70% 1:5 50

Scenario 2
45-50% 1:5 20

30050-55% 1:6 30
65-70% 1:7 50

The other case we need to simulate involves the uniform and non-uniform cost or-
acles. The cost of each instance for the variable-cost oracle is defined as a function of
the class posterior obtained on the randomly chosen subset. The cost of the uniform-
cost oracle is chosen within the range of instance costs for the variable-cost oracle. We
varied the fixed cost such that there is always an incentive to choose between oracles
instead of fully exploiting a single one.

All the results are averaged over 10 runs. At each run, we start with one randomly
chosen labeled example from each class which are assumed to be known a-prori, and
therefore free. The rest of the data is considered unlabeled. The learner selects one ex-
ample at each iteration to be labeled, and the learning function is tested on the remaining
unlabeled set once the label is obtained. The learner pays the cost of each queried exam-
ple regardless of whether the label is obtained. The budget is fixed at 300 in Scenario 1
and 2, and at 20 in Scenario 38. A small budget is enough for the latter since the cost of
individual instances can be very small depending on the posterior probability. The clus-
tering budget, on the other hand, varies according to the unreliability, but is the same
for each baseline under the same scenario (See Table 3).

8 At each run, the total number of iterations to spend the entire budget may differ depending
on how the budget is allocated between oracles. We rely on the minimum number of itera-
tions attained over 10 runs for each experiment. This results in reporting different maximum
elicitation costs smaller than the budget for different experiments
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Evaluation. We conducted a thorough analysis to examine the performance of our
method under various conditions. Due to the lack of existing work on cost-sensitive
active learning with multiple oracles, we compared our method against active sampling
with randomly chosen oracles and active sampling with a single oracle. We denote our
method by Joint, the random sampling of oracles by Random. Reliable, Reluctant, and
Fallible refer to the corresponding single oracle baseline.

We evaluated the performance of the proposed methods on various real-world bench-
mark datasets, but here we only report a representative subset of results. Figure 5 shows
the results for the reluctance scenario on the Spambase dataset. Each plot indicates a
different cost ratio. Our method outperforms the others on every case while the perfor-
mance gap increases with the cost ratio. This is largely because the oracle differences
leave more room for improvement via oracle selection in the latter case. When the un-
reliability gets higher, the reluctant oracle tend to spend almost the entire budget on
a single label acquisition attempt. This leads to acquiring only a small amount of la-
beled data; hence, poor performance. As a result, we do not report the reluctant oracle
baseline except for the 1 : 3 cost ratio.
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Fig. 5. Performance Comparison for Scenario 1 (Reluctance) on the Spambase dataset. The cost
ratio is indicated above each plot.
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Fig. 8. Comparison of different algorithms under non-uniform cost structures (Scenario 3) on
Face (left panel) and Spambase (right panel) datasets. a) Cost Structure 1: Fixed-Cost oracle has
Cost1 b) Cost Structure 2: Fixed-Cost oracle has Cost2.

Figure 6 compares the performances for Scenario 2 on the VY-Letter dataset. The
fallible oracle in this scenario performs poorly as unreliability increases since the labels
are increasingly likely to be noisy. This pattern is especially evident in Figure 6 for the
cost ratio 1 : 7. On the other hand, Joint strategy is quite effective for reducing the error
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in this scenario, indicating that it is capable of reducing the risk of introducing noisy
data through strategic selection between oracles.

Figure 8 presents the evaluation results when the cost varies non-uniformly across
the set of instances. We experimented with different assignments of the fixed cost, but
we present two representative assignments for each dataset. The remaining assignments
are not included since they are similar to those reported here. Joint is the best performer
throughout the full operating range. The performance difference between Joint and each
baseline is also statistically significant based on a paired two-sided t-test (p < 0.01).

In order to investigate if the initial clustering phase helps all the baselines, we re-ran
each baseline excluding the clustering step. (See Figure 7). Every baseline significantly
benefits from clustering, with the biggest boost in improvement occuring for the reluctant
oracle. Hence, both the baselines and the ‘’Joint‘’ strategy benefit from the diversity-
based sampling via clustering in their initial steps. Without pre-clustering, the reluctant
oracle is prone to spend too much on a single elicitation attempt due to unsuccessful
labeling requests. It can, however, maximize the chance of receiving a label through
diversity sampling during the clustering step instead of getting stuck in one round for a
single label.

2.3 Future Directions

Thus far, we explored simple cases each of which addresses a single oracle property
with one perfect and one imperfect oracle. A natural next step is to extend it to multiple
oracles with differing levels of reliability. With multiple oracles, the goal is to select the
oracle-example pair with the maximum utility, but the estimation of the oracle proper-
ties becomes more challenging. For instance, oracles may be fallible at differing levels.
A simple scenario is to assume that each oracle has a fixed probability of making a
labeling mistake independent of the data instance to be classified. The goal, then, is to
estimate each oracle’s noise probability and use the estimates to select the least noisy or-
acle(s) for label acquisition. As before, noise estimation requires an exploration phase
whereas querying the least noisy oracles is the exploitation phase. Hence, there is an
exploration vs. exploitation tradeoff. This problem is analogous in many ways to multi-
armed bandit problem.

The multi-armed bandit problem for a gambler is to decide the arm to pull in a K-
slot machine to maximize her total reward in a series of trials. Each action does not
just bring in reward, but also helps discover new knowledge about the slot machine that
can be used to assist future actions. The reward of each lever is drawn from a specific
distribution which is unknown to the gambler. Thus, she tries to acquire knowledge
through repeated trials via balancing the exploration vs. exploitation tradeoff. There is
quite a lot of work done in the literature to solve the multi-armed bandit problem. One
popular bandit algorithm is the exponential weight algorithm introduced by [Auer et al.,
2002]. The probability of choosing the lever k at round t is defined by:

pk(t) = (1 − γ)
wk(t)

∑j=1
K wj(t)

+
γ

K

where wj(t + 1) = wj(t)exp(γ rj(t)
pj(t)K

) if the lever j has been pulled at time t with the

observed reward rj(t), otherwise wj(t +1) = wj(t). It has a theoretical guarantee that
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the regret of the algorithm is O(
√

KTlog(K)) with γ decreasing over time, where re-
gret is defined the difference between the reward sum of the optimal strategy and the sum
of the collected rewards. This strategy can be adopted to the proactive learning setting
with multiple fallible oracles with the appropriate definitions of the reward function. In
a completely unsupervised setting (absence of gold standard label information), the re-
ward for an oracle output can be determined based on the majority vote from all and/or
a subset of oracles. The majority voting principle has been used by [Sheng et al., 2008]
in a simple context where each oracle has the same noise level; hence, there is no need
for estimation.

More complexity arises when the error probability of each oracle is dependent on
the data instance. This is probably a more realistic assumption than independence on
the data. One possible solution is to leverage the fact that similar instances have similar
labels. In other words, if an oracle makes a misprediction for some instance then it is
likely to make mispredictions on similar instances. Then, it becomes important to query
the oracles for instances that are most representative of the entire input space. A similar
approach to out belief propagation framework can be quite effective to estimate the
oracles’ error probabilities without intensive labeling.

Another interesting problem occurs when each oracle has partial knowledge at only
a certain region of the data distribution and its cost depends on its knowledge. The goal
is to select the oracle who is an expert at the region of interest. Therefore, each oracle
needs an estimate about the region at which it is knowledgeable. One possible way to
attack this problem is to adopt a top-down strategy where each oracle is assumed to be
an expert for the entire data space. The knon expertise region of each oracle shrinks over
time based on inaccurate responses to labeling queries. How to calculate the shrinkage
without massively repeated querrying remains an open question.

The journey to proactive machine learning is a long and exciting one. We have ex-
plored certain roads and not others. For instance, one could simplify the problem by
assuming that oracle properties are fully known a-priori, or one could take detours into
investigations such as referal networks among oracles, if the one queried does not know
the answer with sufficient accuracy – but that would require a more complex cost model
with referral fees and mode complex oracle network learning models.
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